Immunochromatographic Strip Test for the Detection of Alpha Thalassaemia

Dr. Jason So
Department of Pathology, Queen Mary Hospital
Faculty of Medicine
University of Hong Kong
Why do we care about alpha thalassaemia?
Why do we test for alpha thalassaemia in Hong Kong?

• α^0-thalassaemia trait is very common

• ($--^{SEA}$) in 4.5% of our Chinese population

• Rarely ($--^{THAI}$) and ($--^{FIL}$)
Why do we test for alpha thalassaemia in Hong Kong?

- α^0-thalassaemia trait is very common
- $(-^{SEA})$ 4.5% (90% of α thalassaemia with microcytosis)
- $(-\alpha^{3.7})/(-\alpha^{4.2})$ 5.1%
- β thalassaemia 3.1%
- Hb E 0.3%
How do we screen for alpha thalassaemia?

- MCV is very reliable
How do we test for alpha thalassaemia?

- By definition, a genetic disease is confirmed by genotyping
How do we test for alpha thalassaemia?

• In practice, in places where alpha thalassaemia is prevalent, phenotypic testing is performed for routine carrier detection.

• Genotyping is performed when there is reproductive implication.
How do we test for alpha thalassaemia?

- Supravital staining for β_4 (Hb H) inclusion bodies
Routine strategy for alpha thalassaemia diagnosis in Hong Kong

- MCV < 82 fL
 - Supravital staining
 - Haemoglobin H disease
 - α thalassaemia trait
 - Genotyping
How accurate is supravital staining for α^0 mutations?

- Sensitivity as low as 47% in Western countries

- At QMH (05/2014 to 04/2016)
 - 242 cases showed occasional red cells containing Hb H inclusions
 - Majority expected to be (---SEA)
 - All unexplained microcytosis sent for genotyping
 - 2 additional (---SEA) cases found missed by Hb H testing
 \Rightarrow Sensitivity for (---SEA) over 90%
How is this achieved?

• Read the whole slide for 10 min
Time spent on Hb H testing in one year

- On microscopy = 10 min x 1620 cases = 270 hrs
 = 270 hrs / 40 hrs = 6.75 weeks
Time spent on Hb H testing in one year

- On microscopy = 10 min x 1620 cases = 270 hrs
 = 270 hrs / 40 hrs = 6.75 weeks
Alternative methods to detect alpha thalassaemia

Hb H
Alternative methods to detect alpha thalassaemia

Hb Bart’s

Hb H
Alterative methods to detect alpha thalassaemia
Published performance of immunochromatographic (IC) strip tests

<table>
<thead>
<tr>
<th>IC strip test for Hb Bart’s</th>
<th>Sensitivity for α^0</th>
<th>Specificity for α^0</th>
<th>False positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>C Tayapiwatana et al 2009</td>
<td>100 %</td>
<td>86 %</td>
<td>α^+, β thal, normal</td>
</tr>
<tr>
<td>P Prayalaw et al 2014</td>
<td>100 %</td>
<td>73 %</td>
<td>α^+, β thal</td>
</tr>
<tr>
<td>P Winichagoon et al 2015</td>
<td>97 %</td>
<td>87%</td>
<td>α^+, β thal, normal</td>
</tr>
<tr>
<td>C Bunkall et al 2016</td>
<td>100 %</td>
<td>62 %</td>
<td>α^+, normal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IC strip test for zeta chains</th>
<th>Sensitivity for α^0</th>
<th>Specificity for α^0</th>
<th>False positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>L Wen et al 2012</td>
<td>100 %</td>
<td>98 %</td>
<td>normal</td>
</tr>
<tr>
<td>W Jomouii et al 2017</td>
<td>100 %</td>
<td>85 %</td>
<td>α^+, β thal</td>
</tr>
</tbody>
</table>
QMH study on Hb Bart’s IC strip

• Determine whether the high diagnostic sensitivity for (--SEA) can be obtained

• Assess the diagnostic specificity and its potential impact on workflow and workload

• Compare the test performance with supravital staining

• Design an algorithm for cost-effective incorporation
Pre-launch evaluation study

- 01/2016 to 03/2016
- 101 selected cases tested based on phenotypes
 - Hb H inclusion-positive alpha thalassaemia trait and Hb H disease
 - Beta thalassaemia trait
 - Hb E heterozygote
 - No phenotypic Hb abnormalities
Genotypes of 101 selected cases

<table>
<thead>
<tr>
<th>Count</th>
<th>Genotype Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>α^0 heterozygote [44 (-^{SEA}); 1 (-^{THAI}); 1 (-^{FIL})]</td>
</tr>
<tr>
<td>6</td>
<td>α^+ heterozygote [4 (-^{\alpha^{3.7}}); 2 (-^{\alpha^{4.2}})]</td>
</tr>
<tr>
<td>2</td>
<td>Hb H disease [(-^{SEA}/-^{\alpha^{3.7}})]</td>
</tr>
<tr>
<td>16</td>
<td>β^0 heterozygote</td>
</tr>
<tr>
<td>2</td>
<td>Hb E heterozygote</td>
</tr>
<tr>
<td>29</td>
<td>Normal subject</td>
</tr>
</tbody>
</table>
Immunochromatographic (IC) results
Results by genotype group - α thalassaemia

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Total case</th>
<th>Hb H inclusion +</th>
<th>Immunochromatography +</th>
</tr>
</thead>
<tbody>
<tr>
<td>α₀ heterozygote</td>
<td>46</td>
<td>42</td>
<td>46 (4 weak +)</td>
</tr>
<tr>
<td>α⁺ heterozygote</td>
<td>6</td>
<td>0</td>
<td>1 (weak +)</td>
</tr>
<tr>
<td>Hb H disease</td>
<td>2</td>
<td>2 (numerous)</td>
<td>2</td>
</tr>
</tbody>
</table>

- All α₀ were detected (−SEA); (−THAI); (−FIL) by strip but not by staining
- Hb H disease were directly diagnosable by staining but not by strip
Results by genotype group - β thalassaemia

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Total case</th>
<th>Hb H inclusion +</th>
<th>Immunochromatography +</th>
</tr>
</thead>
<tbody>
<tr>
<td>β₀ heterozygote</td>
<td>16</td>
<td>0</td>
<td>1 (weak +)</td>
</tr>
<tr>
<td>Hb E heterozygote</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- False positivity in β₀ heterozygote by strip but none by staining
Results by genotype group - normal

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Total case</th>
<th>Hb H inclusion +</th>
<th>Immunochromatography +</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>29</td>
<td>0</td>
<td>1 (weak +)</td>
</tr>
</tbody>
</table>

- Rare false positivity by strip but none by staining
Interference by high Hb F

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Total case</th>
<th>Hb H inclusion +</th>
<th>Immunochromatography +</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Hb F</td>
<td>7</td>
<td>0 of 6</td>
<td>6 (1 weak +)</td>
</tr>
</tbody>
</table>

- Hb F ranges from 5.7% to 75%
 - Strip negative 5.7%
 - Strip positive 7.5 – 75%

- Presence of a small amount of Hb Bart’s in these cases
Diagnostic performance for α^0 mutations

<table>
<thead>
<tr>
<th>Method</th>
<th>Sensitivity for α^0</th>
<th>Specificity for α^0</th>
<th>False positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC strip</td>
<td>100% (some weak +)</td>
<td>94%</td>
<td>α^+, β thal, normal (all weak +)</td>
</tr>
<tr>
<td>Supravital staining</td>
<td>91%</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>
Incorporation of IC strip in diagnostic algorithm

• Started 01/2017
Immunochromatographic strip for Hb Bart’s (Hb F <5%)
Immunochromatographic strip for Hb Bart’s (Hb F <5%)
Immunochromatographic strip for Hb Bart’s (Hb F <5%) → Scan supravital staining → positive → Hb H disease → α thalassaemia trait
Immunochromatographic strip for Hb Bart’s (Hb F <5%)

Exam supravital staining

Scan supravital staining

α thalassaemia trait

Hb H disease
Immunochromatographic strip for Hb Bart’s (Hb F <5%)

- Exam supravital staining
 - weakly positive
 - positive

- Scan supravital staining
 - positive

- Hb H disease

- α thalassaemia trait
Immunochromatographic strip for Hb Bart’s (Hb F <5%)

Scan supravital staining

- positive
 - Exam supravital staining
 - weakly positive
 - Unexplained
 - Genotyping
 - positive
 - α thalassaemia trait
 - negative
 - Hb H disease

- positive
 - α thalassaemia trait
Immunochromatographic strip for Hb Bart’s (Hb F <5%)

Unexplained

Examination of supravital staining

- Positive
 - α thalassaemia trait
 - Unexplained
- Negative
 - Weakly positive
 - Hb H disease
 - Unexplained
- Negative
 - Unexplained

Genotyping
Post-launch extended evaluation

- Confirm its high sensitivity for α^0 thalassaemia detection

- Determine its ability to detect α^0 thalassaemia when there is co-existing β thalassaemia

- Evaluate the specificity of weakly positive results
Confirm its high sensitivity for α^0 thalassaemia detection

- 67 microcytosis cases - IC strip negative, Hb A_2 normal

- Alpha genotyping results:
 - 2 (--SEA) (1 Hb H inclusion -)
Determine its ability to detect α^0 thalassaemia when there is co-existing β thalassaemia

- 77 β thalassaemia trait cases

- Alpha genotyping results:
 - 4 (--SEA) (3 Hb H inclusion -) (1 IC strip -) not overlap
Evaluate the specificity of weakly positive results

• 54 out of 390 (14%) IC strip tests gave a weakly positive result

• Alpha genotyping results:
 – 6 (--SEA) (2 Hb H inclusion -)
 – 9 (−α^{3.7})/(−α^{4.2})
 – 39 normal alpha genotype
Insights from the post-launch extended evaluation

- Both IC strip test and supravital staining has a very high sensitivity for α^0 thalassaemia, but not at 100%
 - False negative cases largely do not overlap (only 1 of 7 cases negative by both)

- IC strip test can better detect α^0 thalassaemia in co-existing β thalassaemia when compared to supravital staining
 - Both tests together detect all 4 double heterozygous cases

- The rather frequent weak positivity seen in non-α^0 thalassaemia subjects means that IC strip test has a lower specificity than supravital staining
An integrated approach for α^0 thalassaemia detection

- Quick, simple and highly sensitive IC strip test as first line screen

- Highly specific supravital staining as a second line test to improve diagnostic accuracy

- Save manpower, maintain high sensitivity without losing specificity
Immunochromatographic strip for Hb Bart’s (Hb F <5%)

Unexplained

Exam supravital staining

Unexplained

Genotyping

Scan supravital staining

α thalassaemia trait

Hb H disease

α thalassaemia trait
Acknowledgements

- Lee Wing Man
- Pauline Sin
- Maggie Chiu
- Chau Wai Ling
- Alvis Mo
- Yvonne Man
- Leung Kin Sang
- Donna Ngai
- Mandy Tsang
- Yau Wai Kwong
- Esther Lam